State-dependent prox-regular sweeping process with nonconvex perturbation

Alexander Tolstonogov

Matrosov Institute for System Dynamics and Control Theory of Siberian Branch of Russian Academy of Sciences, Lermontov str., 134, Irkutsk, 664033 Russia aatol@icc.ru

Аннотация

В сепарабельном гильбертовом пространстве рассматривается процесс выметания с возмущением. Значениями движущегося множества являются ргох-регулярные множества, зависящие от времени и состояния. Возмущение представляет собой сумму трех многозначных отображений, обладающих различными свойствами полунепрерывности по переменной состояния.

Первое возмущение с замкнутыми, возможно, невыпуклыми, значениями полунепрерывно снизу. Второе возмущение — с замкнутыми выпуклыми значениями — имеет слабо секвенциально замкнутый график. Значениями третьего возмущения могут быть как замкнутые выпуклые, так и незамкнутые множества. Это возмущение имеет замкнутый график в точках выпуклозначности. В точках, в которых значениями отображения являются невыпуклые множества, оно полунепрерывно снизу в окрестностях этих точек. Обычно такие отображения называют отображениями со смешанными свойствами полунепрерывности. Доказана теорема существования. Для ее доказательства предложен новый метод, не связанный с различными версиями catching-up алгоритма. Мы используем классические подходы, базирующиеся на априорных оценках и теореме о неподвижных точках многозначных отображений. Доказанная теорема является новой и включает в себя известные результаты для данного класса процессов выметания с движущимся множеством, зависящим от состояния.

1 Введение

Пусть H — сепарабельное гильбертово пространство с нормой $\|\cdot\|$, скалярным произведением $\langle\cdot,\cdot\rangle$, нулевым элементом Θ и единичным замкнутым шаром \overline{B} с центром в Θ .

Введем следующие обозначения: T=[0,a], a>0 — отрезок числовой полупрямой $R^+=[0,+\infty)$ с мерой Лебега μ и с σ -алгеброй Σ -измеримых по Лебегу множеств из T, ω -H — пространство H, наделенное слабой топологией, $C:T\times H \rightrightarrows H$ — многозначное отображение с замкнутыми T-ргох регулярными значениями T0 и множеством значений T0 и множеством значений T1 и множеством значений T1 и множеством значений T2 и множеством значений T3 и множеством значений T4 и множеством значений T4 и множеством значений T4 и множеством значений T6 и множеством значений T8 и множеством значений T8 и множеством значений T8 и множеством значений T9 и мно

$$\mathcal{R}(C) = \{ \cup C(t, x); \ t \in T, \ x \in H \}. \tag{1.1}$$

Пусть $\mathcal{B}(H)$ — σ -алгебра борелевских множеств из H и $\Sigma \otimes \mathcal{B}(H)$ — σ -алгебра на $T \times H$, порожденная множествами $\Lambda \times \mathcal{D}$, $\Lambda \in \Sigma$, $\mathcal{D} \in \mathcal{B}(H)$. Через C(T,H) обозначаем пространство всех непрерывных отображений из T в H с ѕир-нормой, а $L^1(T,H)$ — пространство интегрируемых по Бохнеру функций из T в H.

Пусть d(y, A) — расстояние от точки y до множества $A \subset X$,

$$||A|| = \sup\{||x||; x \in A\}.$$

Если $A\subset H$ — замкнутое выпуклое множество, то существует единственный элемент $A^0\in A$ минимальной нормы

$$||A^0|| = d(\Theta, A). \tag{1.2}$$

Рассмотрим процесс выметания

$$\begin{cases} -\dot{x}(t) \in \mathcal{N}_{C(t,x(t))}(x(t)) + U(t,x(t)) + V(t,x(t)) + W(t,x(t)) \text{ fi.b.}, \\ x(t) \in C(t,x(t)), \ t \in T, \\ x(0) = x_0 \in C(0,x_0), \end{cases}$$
 (P)

где $\mathcal{N}_{C(t,y)}(x(t))$ — проксимально нормальный конус [2] множества C(t,y) в точке $z\in C(t,y),\ U,V:T\times\mathcal{R}(C)\rightrightarrows H,\ W:T\times H\rightrightarrows H$ — многозначные отображения.

Definition 1.1. Под решением процесса выметания (P) понимается пара (x(f), f) такая, что:

1) $x(f): T \to H$, $x(f)(0) = x_0$ — абсолютно непрерывная функция, $x(f)(t) \in C(t, x(f)(t))$, $t \in T$;

- 2) $f(\cdot) = f_U(\cdot) + f_V(\cdot) + f_W(\cdot)$;
- 3) почти всюду на Т имеют место включения

$$-\dot{x}(f)(t) \in \mathcal{N}_{C(t,x(f)(t))}(x(f)(t)) + f(t),$$

$$f_U(t) \in U(t,x(f)(t),$$

$$f_V(t) \in V(t,x(f)(t),$$

$$f_W(t) \in W(t,x(f)(t).$$

Сделаем следующие предположения.

Hypothesis H(C):

- 1) $C: T \times H \rightrightarrows H$ многозначное с r-prox регулярными значениями;
- 2) существует неубывающая абсолютно непрерывная функция $\beta: T \to R$ и константа $L \in]0,1[$ такие, что

$$|d(z, C(t, x)) - d(z, C(s, y))| \le$$

$$\le \beta(t) - \beta(s) + L||x - y||, \ z, x, y \in H,$$

$$s, t \in T, \ s \le t.$$
(1.3)

Hypothesis H(U):

- 1) Многозначное отображение $U: T \times \mathcal{R}(C) \rightrightarrows H$ с замкнутыми, не обязательно выпуклыми, значениями является слабо $\Sigma \otimes \mathcal{B}(\mathcal{R}(C))$ измеримым;
- 2) отображение $x \to U(t,x)$ полунепрерывно снизу при почти всех $t \in T;$
- 3) существует $l_U(\cdot) \in L^1(T, R^+)$, $l_U(t) > 0, t \in T$, при котором имеет место неравенство

$$d(\Theta, U(t, x)) < l_U(t)(1 + ||x||), \ t \in T.$$
(1.4)

Hypothesis H(V):

1) Многозначное отображение $V: T \times \mathcal{R}(C) \rightrightarrows H$ с замкнутыми выпуклыми значениями имеет слабо секвенциально замкнутый график;

- 2) отображение $x \to V^0(t,x)$ измеримо;
- 3) имеет место неравенство

$$d(\Theta, V(t, x)) \le l_V(t)(1 + ||x||) \quad n.s. \tag{1.5}$$

Hypothesis H(W):

- 1) Многозначное отображение $(t,x) \to W(t,x)$ с замкнутыми значениями является $\Sigma \otimes \mathcal{B}(H)$ измеримым;
- 2) отображение $(t,x) \to W(t,x)$ является $\Sigma \otimes \mathcal{B}(H)$ измеримым;
- 3) для почти каждого $t \in T$ и любой точки $x_0 \in H$ отображение $W(t,\cdot)$ либо имеет замкнутый график в точке x_0 и множество $W(t,x_0)$ является выпуклым, либо сужение отображения $W(t,\cdot)$ на некоторую окрестность точки x_0 является полунепрерывным снизу;
- 4) неравенство

$$d(\Theta, W(t, x)) < l_W(t)(1 + ||x||), \ x \in H$$
(1.6)

выполняется при некотором $l_W(\cdot) \in L^1(T, \mathbb{R}^+), l_W(t) > 0, t \in T;$

5) для любого ограниченного множества $\mathcal{D} \subset H$ множество

$$W(t, \mathcal{D}) \cap l_W(t)(1 + ||\mathcal{D}||)\overline{B}$$
(1.7)

относительно компактно при почти всех $t \in T$, где

$$W(t, \mathcal{D}) = \{ \cup W(t, x); \ x \in \mathcal{D} \}.$$

Рассмотрим дифференциальное уравнение

$$\dot{\rho}(t) = \frac{1}{1 - L} (\dot{\beta}(t) + 2l(t)(1 + \rho(t))), \tag{1.8}$$

$$\rho(0) = ||x_0||,$$
 где

$$l(t) = l_U(t) + l_V(t) + l_W(t), (1.9)$$

которое, как известно, имеет единственное решение

$$\rho(t) = \|x_0\| \exp \gamma(t) + \frac{1}{1 - L} \int_0^t (\dot{\beta}(s) + 2l(s))(\exp(\gamma(t) - \gamma(s))) ds, \quad (1.10)$$

 $t \in T$, где

$$\gamma(t) = \frac{2}{1-L} \int_{0}^{t} l(s)ds. \tag{1.11}$$

Hypotheses $H(C_S)$. Для любого ограниченного множества $\mathcal{D} \subset H$, $\|\mathcal{D}\| \leq \rho(t)$ множество

$$C(t, \mathcal{D}) \cap \mathcal{D}, \ t \in T$$
 (1.12)

относительно компактно.

Основной результат

Theorem 1.1. Пусть выполняются предположения H(C), $H(C_S)$, H(U), H(V), H(W). Тогда процесс выметания (P) имеет решение (x(f), f), удовлетворяющее неравенством

$$||x(f)(t)|| \le \rho(t), \ t \in T, \ ||\dot{x}(f)(t)|| \le \dot{\rho}(t) \ n.e.,$$
 (1.13)

$$||f(t)|| \le l(t)(1+\rho(t)) \text{ n.s.}$$
 (1.14)

Вопросы существования абслютно непрерывных решений процессов выметания с зависящими от состояния r-prox регулярными движущимися множествами и различными видами возмущений рассматривался в работах [3]–[7].

В работе [3] возмущением являлось однозначное типа Каратеодори отображение.

В работе [4] процесс выметания рассматривался в конечномерном пространстве. В этой работе возмущение представляет сумму $\Sigma \otimes \mathcal{B}(H)$ измеримого и скалярно полунепрерывного сверху многозначного отображения с замкнутыми выпуклыми значениями и и отображения, аналогичного отображению W(t,x) в нашей работе.

Отметим, что скалярная полунепрерывность многозначного отображения $x \to F(x)$ с замкнутыми выпуклыми значениями означает полунепрерывность сверху для любого $z \in H$ функции

$$x \to \sup\{\langle z, y \rangle; \ y \in F(x)\}.$$

В работе [5] рассматривалось скалярно полунепрерывное сверху по обоим переменным многозначное отображение с замкнутыми выпуклыми значениями. В работе [6] возмущение представляет сумму однозначного типа Каратеодори отображения и $\Sigma \otimes \mathcal{B}(H)$ измеримого многозначного отображения с замкнутыми выпуклыми значениями, которое является скалярно полунепрерывным сверху.

В работе [7] возмущение представляет сумму однозначного типа Каратеодори отображения и скалярно полунепрерывного сверху многозначного отображения с замкнутыми выпуклыми значениями.

Во всех этих работах, за исключением работы [7], предполагалось, что отображение C(t,x) обладает свойством ball-compactness, т.е. для любого ограниченного множества \mathcal{D} пересечение множества $C(t,\mathcal{D})$ с любым замкнутым шаром является относительно компактным множеством.

В работе [7] подобное свойство формулируется в терминах меры некомпактности.

Возмущение в работах [3]–[7] является частным случаем возмущения в нашей работе, так как:

- 1) из скалярной полунепрерывности сверху при условиях роста, которые используются в этих работах, следует полунепрерывность сверху многозначного отображения как отображения в пространство ω -H, из которой следует слабая секвенциальная замкнутость графика отображения;
- 2) во всех этих работах отсутствуют многозначные возмущения с замкнутыми невыпуклыми значениями, аналоги возмущения U(t,x) в нашей работе;
- 3) из ball-compactness отображения C(t,x) следует свойство, сформулированное в предположении $H(C_S)$.

Поэтому результаты работ [3]–[6] являются частным случаем теоремы 1.1. Теорема 3.3 в работе [7] не вытекает из теоремы 1.1, так как свойство типа ball-compactness в работе [7] и свойство в предположении $H(C_S)$ не взаимосвязаны. Отметим, что доказательства нашей теоремы отличаются от доказательств в работах [3]–[7], использующих аналоги cathing-up алгоритма [8]. Наше доказательство отличается достаточной простотой и наглядностью. В основу наших доказательств положены априорные оценки и теорема Ки Фана [9] о неподвижной точке для многозначных отображений.

2 Основные обозначения и определения

Всюду в дальнейшем X — банахово пространство с нормой $\|\cdot\|$, нулевым элементом Θ и единичным открытым B и замкнутым \overline{B} шарами в точке Θ . Через d(y,A) мы обозначаем расстояние от точки $y\in X$ до множества $A\subset X$ и

$$||A|| = \sup \{||y||; \ y \in A\}.$$

Для множества $A\subset X$ символы со A и $\overline{\text{со}}\,A$ означают выпуклую и замкнутую выпуклую оболочки множества A. Через ω -X мы обозначаем пространство X, наделенное слабой топологией, а ω -A означает, что множество $A\subset X$ наделено топологией, индуцированной топологией пространства ω -X.

C(T,X) — это пространство всех непрерывных отображений из T в X с ѕир-нормой.

Пусть Y — метрическое пространство. Многозначное отображение F : $Y \rightrightarrows X$ — это отображение, значениями которого являются непустые множества из X.

Обозначим через

$$F^{-1}(U) = \{ y \in Y; \ F(y) \cap U \neq \emptyset \}, \ U \subset X.$$

Многозначное отображение $F:T\rightrightarrows X$ называется измеримым (слабо измеримым), если $F^{-1}(U)\in\Sigma$ для любого замкнутого (открытого) множества $U\subset H$.

Если $F:Y \rightrightarrows X$, тогда в определении измеримости (слабой измеримости) отображения следует брать σ -алгебру $\mathcal{B}(Y)$ борелевских множеств из Y.

Аналогично, если $F: T \times Y \rightrightarrows X$ — многозначное отображение, тогда различные определения измеримости понимаются относительно σ -алгебры $\Sigma \otimes \mathcal{B}(Y)$ на $T \times Y$, порожденной множествами вида $\Lambda \times A, \Lambda \in \Sigma, A \in \mathcal{B}(Y)$. В этом случае часто говорят о совместной или $\Sigma \otimes \mathcal{B}(Y)$ измеримости.

Следующие свойства можно найти в [10].

Если X сепарабельно, то $\Sigma \otimes \mathcal{B}(Y)$ измеримость многозначного отображения $F: T \times Y \rightrightarrows X$ с замкнутыми значениями влечет слабую $\Sigma \otimes \mathcal{B}(Y)$ измеримость.

Если $F:T \rightrightarrows X$ — отображение с замкнутыми значениями, то измеримость и слабая измеримость эквивалентны.

Многозначное отображение $F:Y\rightrightarrows X$ полунепрерывно снизу в точке $y_0\in Y$, если для любого открытого множества $U\subset X, F(y_0)\cap U\neq\varnothing$

существует окрестность $V(y_0)$ точки y_0 такая, что $F(y) \cap U \neq \emptyset$ для любого $y \in V(y_0)$.

Многозначное отображение $F:Y \rightrightarrows X$ полунепрерывно сверху в точке $y_0 \in Y$, если для любого открытого множества $U \subset X, F(y_0) \subset U$ существует окрестность $V(y_0)$ точки y_0 такая, что $F(y) \subset U$ для любого $y \in V(y_0)$.

Если отображение $F:Y\rightrightarrows X$ полунепрерывно снизу (сверху) в каждой точке $y_0\in Y$, то оно полунепрерывно снизу (сверху) на Y.

Обозначим через gr F график многозначного отображения F:Y
ightharpoonup X

$$\operatorname{gr} F = \{(y, x) \in Y \times X; \ x \in F(y)\}.$$

Многозначное отображение $F:Y \rightrightarrows \omega$ -X имеет слабо замкнутый график в точке $y_0 \in Y$, если для любой направленности $\{(y_\alpha,x_\alpha)\}\in \operatorname{gr} F$, сходящейся в $Y\times \omega$ -X к (y_0,x_0) имеет место включение $x_0\in F(y_0)$. Если вместо направленности $\{(y_\alpha,x_\alpha)\}\in \operatorname{gr} F$ берется последовательность $(y_n,x_n),n\geq 1$, то говорят о секвенциальной слабой замкнутости графика в точке y_0 .

В дальнейшем для удобства мы будем говорить о слабой и слабой секвенциальной замкнутости отображения F в точке y_0 вместо слабой и слабой секвенциальной замкнутости графика отображения в точке y_0 . Если отображение $F:Y \rightrightarrows \omega\text{-}X$ слабо замкнуто (слабо секвенциально замкнуто) в каждой точке $y_0 \in Y$, то оно слабо замкнуто (слабо секвенциально замкнуто).

Определение слабой полунепрерывности сверху многозначного отображения $F:Y \rightrightarrows \omega\text{-}X$ дается аналогично определению полунепрерывности сверху отображения $F:Y \rightrightarrows X$, следует только вместо открытого множества $U \subset X$ брать открытое множество $U \subset \omega\text{-}X$.

Многозначное отображение $F:Y \rightrightarrows \omega$ -X называется слабо локально компактным в точке y_0 , если существует окрестность $U(y_0)$ точки y_0 такая, что множество $F(U(y_0)) = \{ \cup F(y); y \in U(y_0) \}$ относительно компактно в пространстве ω -X.

Многозначное отображение $F:Y\rightrightarrows X$ имеет свойство (Q) в точке $y_0\in Y$, если включение

$$\bigcap_{n=1}^{\infty} \overline{\operatorname{co}} \bigcup_{k=n}^{\infty} (F(y_k) \subset F(y_0))$$

имеет место для любой последовательности $y_n, n \ge 1$, сходящейся к y_0 .

Отметим, что если F имеет свойство (Q), то множество $F(y_0)$ выпукло и замкнуто.

Пусть $A_1, A_2 \subset X$ — замкнутые множества. Обозначим через haus (A_1, A_2) расстояние по Хаусдорфу между замкнутыми множествами A_1 и A_2 .

haus
$$(A_1, A_2) = \max \{ \sup_{x \in A_2} d(x, A_1), \sup_{y \in A_1} d(y, A_2) \}.$$

Известно, что

haus
$$(A_1, A_2) = \sup_{y \in X} |d(y, A_1) - d(y, A_2)|$$
 (2.1)

и называется обобщенной метрикой Хаусдорфа, т.к. в случае неограниченных множеств $A_i, i=1,2$ она может принимать значение $+\infty$.

Пусть S — непустое подмножество гильбертова пространства H. Для любого $x \in H$ ближайшие к x точки из S определяются как

$$\operatorname{Proj}_{S}(x) = \{ y \in S'; \ d(x, S) = ||x - y|| \}.$$

Если $Prj(x)=\{\overline{y}\}$ для некоторого $\overline{y}\in S$, то говорят, что проекция $\operatorname{Proj}_S(x)$ (или $P_S(x)$) точки x на множество S определена и $\operatorname{Proj}_S(x)=\overline{y}$. Вектор $v\in H$ является проксимально нормальным вектором в точке $x\in S$ [11], если существует число r>0 такое, что $x\in \operatorname{Proj}_S(x+rv)$. Множество всех проксимально нормальных векторов в точке x обозначается $N_S^P(x)$ или $N^P(S;x)$ и является выпуклым (не обязательно замкнутым в H) конусом, содержащим Θ . Как обычно.

$$N_S^P(x) = \emptyset$$
, если $x \in H \backslash S$.

Definition 2.1 ([2]). Пусть $S \subset H$ — непустое замкнутое множество, $r \in]0, +\infty]$. Множество S называется r-prox регулярным (или равномерно prox-регулярным c константой r), если для любых $x \in S, v \in N_S^P(x) \cap \overline{B}$ и всех $t \in]0, r[$ имеет место включение $x \in \operatorname{Proj}_S(x+tv)$.

Из теоремы 2.2 в [2] вытекает, что если множество S является г-ргох регулярным, то $N_S^P(x), x \in S$ является замкнутым выпуклым конусом в H.

Всюду в дальнейшем по аналогии с [2] мы будем конус $N_S^P(x)$ обозначать как $N_S(x)$.

3 Предварительные сведения

Всюду в дальнейшем в этом параграфе Y — метрическое пространство, X — банахово пространство и $F:Y\rightrightarrows X$ — многозначное отображение с замкнутыми выпуклыми значениями. Следующие свойства такого отображения можно найти в [12].

Proposition 3.1. Если отображение $F: Y \Rightarrow \omega$ -X слабо замкнуто в точке $y_0 \in Y$, то оно слабо секвенциально замкнуто в этой точке. Обратно, если $Z \subset X$ — метризуемое компактное множество в ω -X и $F: Y \Rightarrow Z$ слабо секвенциально замкнуто в точке $y_0 \in Y$, то оно слабо замкнуто в точке y_0 .

Proposition 3.2. *Если отображение слабо полунепрерывно сверху в точ* $\kappa e \ y_0$, то оно слабо замкнуто в точке y_0 .

Proposition 3.3. Пусть $F: Y \rightrightarrows \omega$ -X слабо замкнуто в точке y_0 , и локально компактно в точке y_0 , то отображение F слабо полунепрерывно сверху в точке y_0 . При этом множество $F(y_0)$ является выпуклым слабо компактным множеством

Proposition 3.4. Если отображение $F:Y
ightharpoonup \omega$ -X и выполняется одно из условий:

- (i) отображение F слабо полунепрерывно сверху в точке y_0 ;
- (ii) отображение F слабо замкнуто в точке y_0 и слабо локально компактно в этой точке.

Тогда отображение F обладает свойством (Q) в этой точке.

Theorem 3.1. Пусть M — метрическое пространство, $C: M \Rightarrow H$ — непрерывное в метрике Хаусдорфа отображение, значениями которого являются r-ргох регулярные множества, $r \in]0, +\infty]$. Если последовательности $z_n \in M, x_n \in C(z_n), n \geq 1$ сходятся κ z u x, а последовательность $\xi_n \in N_{C(z_n)}(x_n), n \geq 1$ слабо сходится κ ξ , то $x \in C(z)$ u $\xi \in N_{C(z)}(x)$.

Теорема непосредственно вытекает из теоремы 2.2 в [4] и утверждения 2.3 в [2].

4 Многозначный оператор Немыцкого и его селекторы

Всюду в дальнейшем H — сепарабельное гильбертово пространство. Пусть $\mathcal{K}\subset C(T,H)$ — компактное множество и

$$\mathcal{K}(t) = \{x(t); \ x(\cdot) \in \mathcal{K}\}, \ t \in T.$$

Тогда множество

$$\mathcal{R}(\mathcal{K}) = \{ x(t); \ t \in T, \ x(\cdot) \in \mathcal{K} \}$$
(4.1)

является компактом в H.

Предположим, что

$$\mathcal{R}(\mathcal{K}) \subset \mathcal{R}(C),\tag{4.2}$$

где $\mathcal{R}(C)$ — множество, определенное равенством (1.1).

Пусть выполняются гипотезы H(U). Из неравенства (1.4) следует, что множество

$$\Gamma(t,x) = U(t,x) \cap l_U(t)(1 + ||x||)B \tag{4.3}$$

не пусто для любых $t \in T, x \in \mathcal{R}(\mathcal{K})$.

Обозначим через $\overline{\Gamma}(t,x)$ замыкание множества $\Gamma(t,x)$. Тогда будет определено многозначное отображение $\overline{\Gamma}: T \times \mathcal{R}(\mathcal{K}) \rightrightarrows H$ с замкнутыми значениями.

Lemma 4.1. Пусть выполняются предположения H(U). Тогда существует борелевское множество $\mathcal{T} \subset T$, $\mu(\mathcal{T}) = 0$ такое, что многозначное отображение $\tilde{\Gamma}: T \times \mathcal{R}(\mathcal{K}) \rightrightarrows H$,

$$\tilde{\Gamma}(t,x) = \overline{\Gamma}(t,x), \ t \in T \setminus \mathcal{T}, \ \tilde{\Gamma}(t,x) = \Theta, t \in \mathcal{T}, \ x \in \mathcal{R}(\mathcal{K})$$
 (4.4)

с замкнутыми значениями является слабо $\Sigma \otimes \mathcal{B}(\mathcal{R}(\mathcal{K}))$ измеримо и полунепрерывно снизу по x при всех $t \in T$.

Так как множество $\mathcal{R}(\mathcal{K})$ является суслинским, то доказательство леммы дословно повторяет доказательство леммы 5.2 в [13] с заменой области определения $T \times H$ отображения U на $T \times \mathcal{R}(\mathcal{K})$.

Theorem 4.1. Пусть выполняются гипотезы H(U). Тогда существует непрерывное отображение $g: \mathcal{K} \to L^1(T,H)$ такое, что

$$g(x)(t) \in U(t, x(t)) \text{ n.e., } x(\cdot) \in \mathcal{K},$$
 (4.5)

$$||g(x)(t)|| \le l_U(t)(1+||x(t)||) \text{ n.e., } x(\cdot) \in \mathcal{K}.$$
 (4.6)

Доказательство. Из лемы 4.1 следует, что для любого $x(\cdot) \in \mathcal{K}$ отображение $t \to \tilde{\Gamma}(t,x(t))$ является слабо измеримым с замкнутыми значениями. Тогда согласно (4.4) таковым является и многозначное отображение $t \to \overline{\Gamma}(t,x(t))$. Поэтому существует измеримый селектор отображения $t \to \overline{\Gamma}(t,x(t))$. Обозначим

$$\mathcal{G}_U(x) = \{ u(\cdot) \in L^1(T, H); \ u(t) \in \overline{\Gamma}(t, x(t)) \text{ п.в.} \}. \tag{4.7}$$

Из (4.3) следует, что множество $\mathcal{G}(x)$ является непустым замкнутым подмножеством пространства $L^1(T,H)$.

Дословно повторяя доказательство леммы 5.3 в [13] с заменой пространства $L^2(T,H)$ на $L^1(T,H)$, мы получим, что существует непрерывное отображение $g: \mathcal{K} \to L^1(T,H)$ такое, что

$$g(x) \in \mathcal{G}_U(x), \ x(\cdot) \in \mathcal{K}.$$
 (4.8)

Из этого включения, (4.7) и (4.3) следует, что имеет место включение (4.5) и неравенство (4.6). Теорема доказана.

Пусть

$$\mathcal{U}(x) = \{ u(\cdot) \in L^{1}(T, H); \ u(t) \in U(t, x(t)) \text{ п.в.} \}, \ x(\cdot) \in \mathcal{K}.$$
 (4.9)

Из теоремы 4.1 следует, что множество не пусто. Тем самым будет определен многозначный оператор $\mathcal{U}:\mathcal{K} \rightrightarrows L^1(T,H)$, который называется многозначным оператором Немыцкого. Как следует из (4.9), (4.8), (4.7) и (4.3), отображение $g:\mathcal{K}\to L^1(T,H)$ является непрерывным селектором оператора Немыцкого.

Пусть выполняются предположения H(V). Тогда из неравенства (1.5) следует, что будет определено многозначное отображение $\tilde{V}: \mathcal{R}(\mathcal{K}) \rightrightarrows H$

$$\tilde{V}(t,x) = V(t,x) \cap l_V(t)(1 + ||x(t)||)\overline{B}$$
 (4.10)

с непустыми выпуклыми значениями.

Lemma 4.2. Пусть выполняются предположения H(V). Тогда для любого $x(\cdot) \in \mathcal{K}$ отображение $t \to \tilde{V}(t,x(t))$ имеет интегрируемый селектор.

Доказательство. Функцию $y: T \to \mathcal{R}(\mathcal{K})$ назовем ступенчатой функцией, если она постоянна на полуинтервале $[c_{i-1}, c_i), 1 \le n-1$ и на отрезке $[c_{n-1}, c_n]$, где $0 = c_0 < c_1 \cdots < c_k \le c_n = a$ — разбиение отрезка T = 0, a]. Для непрерывной функции $x \to \mathcal{R}(\mathcal{K})$ существует последовательность

 $x_k: T \to \mathcal{R}(\mathcal{K}), k \geq 1$ ступенчатых функций, сходящихся равномерно на T к функции $x(\cdot)$.

Из свойства H(V)(2) и (4.10) следует, что для любого $k \ge 1$ существует измеримый селектор $t \to v_k(t)$,

$$v_k(t) = V^0(t, x_k(t)), \quad k \ge 1,$$
 (4.11)

$$||v_k(t)|| \le l_V(t)(1 + ||x_{k_k}(t)||$$
 (4.12)

многозначного отображения $t \to \tilde{V}(t, x_k(t))$.

Так как множество $\mathcal{R}(\mathcal{K}) \subset H$ компакт, то из (4.10) вытекает, что существует константа M>0, для которой будет иметь место включение

$$\widetilde{V}(t,x) \subset l_V(t)(1+M)\overline{B}$$
 II.B., $x \in \mathcal{R}(\mathcal{K})$. (4.13)

Так как $v_k(t) \in \widetilde{V}(t,x), k \geq 1$, то из (4.13) вытекает, что последовательность $v_k(\cdot), k \geq 1$ является относительно компактным подмножеством пространства ω - $L^1(T,H)$. Так как любой компакт пространства ω - $L^1(T,H)$ метризуем, то не нарушая общности, можно считать, что $v_k(\cdot)$ сходятся в пространстве ω - $L^1(T,H)$ к некоторому элементу $v_k(\cdot) \in L^1(T,H)$.

Из леммы Мазура для слабо сходящихся последовательностей вытекает включение

$$v(t) \in \bigcap_{m=1}^{\infty} \overline{\operatorname{co}} \bigcup_{k=m}^{\infty} v_k(t) \text{ п.в.}$$
 (4.14)

Из (4.13), предположения H(V)(1) и утверждения 3.1 следует, что отображение $x \to \widetilde{V}(t,x), x \in \mathcal{K}$ слабо замкнуто и слабо локально компактно в каждой точке $x \in \mathcal{R}(\mathcal{K})$. Тогда из утверждения 3.4 вытекает, что отображение $x \to \widetilde{V}(t,x)$ обладает свойством (Q) в точке x(t) при почти каждом $t \in T$. Поэтому

$$\bigcap_{m=1}^{\infty} \overline{\operatorname{co}} \bigcup_{k=m}^{\infty} \widetilde{V}(t, x_k(t)) \subset \widetilde{V}(t, x(t)) \text{ II.B.}$$
(4.15)

Так как $v_k(t) \in \widetilde{V}(t,x_k(t)), k \ge 1$, то из (4.14), (4.15) следует, что

$$v(t) \in \widetilde{V}(t, x(t))$$
 п.в. (4.16)

Из этого включения и (4.13) следует, что $v(\cdot)$ является интегрируемым селектором отображения $t \to \widetilde{V}(t,x(t))$. Лемма доказана.

Пусть

$$\mathcal{G}_{\widetilde{V}}(x) = \{ v(\cdot) \in L^1(T, H); \ v(t) \in \widetilde{V}(t, x(t)) \text{ II.B.} \}.$$
 (4.17)

Из леммы 4.2 и (4.13), (4.17) вытекает, что $\mathcal{G}_{\widetilde{V}}(x)$ является непустым, выпуклым компактным подмножеством пространства ω - $L^1(T,H)$.

Theorem 4.2. Пусть выполняются предположения H(V). Тогда отображение $x \to \mathcal{G}_{\widetilde{V}}(x)$ является слабо полунепрерывным сверху отображением из \mathcal{K} в ω - $L^1(T,H)$ с выпуклыми слабо компактными значениями и для любого $v_k(\cdot) \in \mathcal{G}_{\widetilde{V}}(x)$ имеет место включение

$$v(x)(t) \in V(t, x(t))$$
 n.s. (4.18)

Доказательство. Пусть $x_k(\cdot) \in \mathcal{K}, \ v_k(\cdot) \in \mathcal{G}_{\widetilde{V}}(x_k), \ k \geq 1$ — произвольные последовательности, сходящиеся к $x(\cdot)$ в C(T,H) и к $v(\cdot)$ в ω - $L^1(T,H)$. Так как $v_k(L) \in \widetilde{V}(t,x_k(t)), \ k \geq 1$ п.в., то из включений (4.14), (4.15), справедливых для последовательностей $x_k(\cdot), \ v_k(\cdot), \ k \geq 1$, мы получаем включение (4.16). Из этого включения и (4.17) следует, что отображение $x \to \mathcal{Y}_{\widetilde{V}}(x)$ слабо секвенциально замкнуто, как отображение из \mathcal{K} в ω - $L^1(T,H)$.

Так как множество $\{f(\cdot) \in L^1(T,H); \|f(t)\| \leq l_V(t)(1+M)$ п.в. $\}$ является выпуклым, метрируемым компактным подмножеством пространства ω - $L^1(T,H)$, то из (4.13) и утверждений 3.1, 3.3 следует, что отображение $x \to \mathcal{G}_{\widetilde{V}}(x)$ является слабо полунепрерывным сверху отображением из \mathcal{K} в ω - $L^1(T,H)$ с выпуклыми, слабо компактными значениями, а включение (4.18) вытекает из (4.10) и (4.17). Теорема доказана.

Пусть $\mathcal{G}_{\mathcal{U}}(x)=\{v(\cdot)\in L^1(T,H);\ v(t)\in V(t,x(t))$ п.в.}. Из теоремы 4.2 и (4.10), (4.17) следует, что множество $\mathcal{G}_{\mathcal{U}}(x)$ не пусто и многозначный оператор Немыцкого $\mathcal{G}:\mathcal{K} \rightrightarrows L^1(T,H)$ имеет слабо полунепрерывный многозначный селектор $\mathcal{G}_{\widetilde{V}}(x)\subset \mathcal{G}_{\mathcal{U}}(x),\ x\in\mathcal{K}$ с выпуклыми слабо компактными значениями.

Theorem 4.3. [13] Пусть выполняются предположения H(W). Тогда существует слабо полунепрерывное сверху многозначное отображение $\mathcal{G}_W \colon \mathcal{K} \rightrightarrows \omega\text{-}L^1(T,H)$ с выпуклыми слабо компактными значениями такое, что для любого $x(\cdot) \in \mathcal{K}$ и любого $w(\cdot) \in \mathcal{G}_W(x)$ имеет место включение

$$v(w)(t) \in W(t, x(t)) \quad n.s. \tag{4.19}$$

и неравенство

$$\|\mathcal{W}(t)\| \le l_W(t)(1 + \|x(t)\|) \ n.s. \tag{4.20}$$

Обозначим через $\mathcal{G}_{\mathcal{W}}(x)$ множество $\mathcal{G}_{\mathcal{W}}(x) = \{w(\cdot) \in L^1(T,H); w(t) \in W(t,x(t))$ п.в. $\}$, $x(\cdot) \in \mathcal{K}$. Тогда из теоремы 4.3 вытекает, что многозначный оператор Немыцкого $\mathcal{G}_{\mathcal{W}}(x)$: $\mathcal{K} \rightrightarrows \omega$ - $L^1(T,H)$ имеет слабо полунепрерывный сверху многозначный селектор $\mathcal{G}_{\mathcal{W}} \subset \mathcal{G}_{\mathcal{W}}(x)$, $x(\cdot) \in \mathcal{K}$ с выпуклыми слабо компактными значениями.

5 Основной результат

В этом параграфе мы приведем доказательство теоремы 1.1.

Theorem 5.1 ([2]). Пусть $C:T \Rightarrow H$ — многозначное отображение, значениями которого является r—prox регулярные множества. Предположим, что существует абсолютно непрерывная неубывающая функция $v:T \to R$ такая, что

$$|d(y, C(s)) - d(y, C(t))| \le v(t) - v(s),$$

 $y \in H, s, t \in T, s < t.$ (5.1)

Тогда для любого $f(\cdot) \in L^1(T,H)$ процесс выметания

$$-\dot{x}(t) \in N_{C(t)}(x(t)) + f(t),$$

$$x(0) = x_0 \in C(0)$$
(5.2)

имеет единственное абсолютно непрерывное решение $x(f): T \to H$, $x(f)(0) = x_0, \ x(f)(t) \in C(t), \ t \in T$, производная которого удовлетворяет неравенству

$$\|\dot{x}(f)(t)\| \le \dot{v}(t) + 2\|f(t)\|$$
 n.s. (5.3)

Обозначим через AC(T,H) пространство абсолютно непрерывных функций $x:T\to H.$

Пусть $\rho(t), \rho(0) = ||x_0||$ — решение уравнения (1.8). Обозначим через $S \subset AC(T,H)$ множество

$$S = \{ u(\cdot) \in AC(T, H); \ u(0) = x_0, \ \|\dot{u}(t)\| \le \dot{\rho}(t) \text{ II.B.} \}. \tag{5.4}$$

Множество S является замкнутым выпуклым подмножеством пространства C(T, H). Рассмотрим процесс выметания

$$-\dot{x}_{\mathcal{U}}(f)(t) \in N_{C(t,u(t))}(x_u(f)(t) + f(t),$$

$$x_{\mathcal{U}}(f)(0) = x_0, \ u(\cdot) \in S', \ f(\cdot) \in S(L^1),$$
(5.5)

$$S(L^{1}) = \{ f(\cdot) \in L^{1}(T, H); \| f(t) \| \le l(t)(1 + \rho(t)) \text{ п.в.} \},$$
 (5.6)

где l(t) определяется равенством (1.9).

Множество $S(L^1)$ является выпуклым, метризуемым компактным подмножеством пространства $\omega\text{-}L^1(T,H)$.

Пусть $u(\cdot) \in S$ и

$$v(t) = \beta(t) + L \int_0^t ||\dot{u}(S)|| dS, \ t \in T.$$
 (5.7)

Воспользовавшись (1.3), (5.8) и теоремой 5.1, мы получим, что для любых $u(\cdot) \in S$ и $f(\cdot) \in S(L^1)$ включение (5.5) имеет единственное решение $x_{\mathcal{U}}(f)(t), \ x_{\mathcal{U}}(t)(0)$

$$x_{\mathcal{U}}(f)(t) \in C(t, u(t)), \tag{5.8}$$

$$\|\dot{x}_{\mathcal{U}}(f)(t)\| \le \dot{\beta}(t) + L\|\dot{u}(T)\| + 2l(t)(1+\rho(t)).$$
 (5.9)

Обозначаем через \mathcal{M} множество решений включения (5.5) с $u(\cdot) \in S$ и $f(\cdot) \in S(L^1)$.

Lemma 5.1. *Имеет место включение*

$$\mathcal{M} \subset S \tag{5.10}$$

 $u \mathcal{M}$ является относительно компактным подмножеством пространства C(T,H).

Доказательство. Как уже было сказано выше, непустота множества \mathcal{M} вытекает из теоремы 5.1. Пусть $u(\cdot) \in S$ и $f(\cdot) \in S(L^1)$. Из (5.4), (5.6), (5.9) вытекает, что

$$\|\dot{x}_{\mathcal{U}}(f)(t)\| \le \dot{\beta}(t) + L\dot{\rho}(t) + 2l(t)(1+\rho(t)).$$
 (5.11)

Из (1.8) и (5.1) мы получаем неравенство

$$\|\dot{x}_{\mathcal{U}}(f)(t)\| \le \dot{\rho}(t). \tag{5.12}$$

Из этого неравенства и (5.4) вытекает включение (5.10). Из (5.12) мы получаем, что множество $\mathcal M$ равностепенно непрерывно. Пусть

$$\mathcal{M}(t) = \{ \cup x_{\mathcal{U}}(f)(t); \ x_{\mathcal{U}}(f)(\cdot) \in \mathcal{M} \}$$
$$S(t) = \{ \cup x(t); \ x(\cdot) \in S \}.$$

Из (5.10) и (5.8) следует, что

$$\mathcal{M}(t) \subset C(t, S(t)) \cap S(t) \neq \phi, \ t \in T.$$
 (5.13)

Из этого включения, (5.4) и предположения $H(C_S)$ вытекает, что для любого $t \in T$ множество $\mathcal{M}(t) \subset H$, $t \in T$ относительно компактно. Поэтому согласно теореме Арцела–Асколи множество \mathcal{M} относительно компактно в пространстве C(T,H). Лемма доказана.

Пусть \overline{co} \mathcal{M} — замкнутая выпуклая оболочка множества \mathcal{M} . Тогда \overline{co} \mathcal{M} является компактным подмножеством пространства C(T,H) и согласно (5.10) имеют место включения

$$\mathcal{M} \subset \overline{co} \ \mathcal{M} \subset S. \tag{5.14}$$

Обозначим через $\mathcal{L}: \overline{co}\mathcal{M} \times S(L^1) \to AC(T,H)$ оператор, который каждому элементу $u(\cdot) \in \overline{co}\mathcal{K}$ и $f(\cdot) \in S(L^1)$ ставит в соответствие единственное решение включения (5.5), т.е.

$$x(\cdot) = \mathcal{L}(u, f). \tag{5.15}$$

Theorem 5.2. Оператор \mathcal{L} является непрерывным из \overline{co} $\mathcal{M} \times \omega$ - $S(L^1)$ в \mathcal{M} .

Доказательство. Включение

$$\mathcal{L}(u, f) \in \mathcal{M}, \ u \in \overline{co} \, \mathcal{M}, \ f \in S(L^1)$$
 (5.16)

следует из второго включения (5.14) и определения множества \mathcal{M} . Пусть последовательность $u_n(\cdot) \in \overline{co} \mathcal{M}, \ n \geq 1$ сходится к $u(\cdot)$ в C(T,H), а последовательность $f_n(\cdot) \in S(L^1), \ n \geq 1$ сходится к $f(\cdot)$ в пространстве ω - $L^1(T,H)$ и

$$x_n(\cdot) = \mathcal{L}(u_n(\cdot), f_n(\cdot)), \ n \ge 1, \tag{5.17}$$

$$x(\cdot) = \mathcal{L}(u(\cdot), f(\cdot)). \tag{5.18}$$

Из(5.12), (5.16) и относительной компактности множества \mathcal{M} вытекает, что существует подпоследовательность $x_{nk}(\cdot), k \geq 1$ последовательности $x_n(\cdot), n \geq 1$ такая, что

$$x_{n_k}(\cdot) \to y(\cdot) \text{ B } C(T, H),$$
 (5.19)

$$\dot{x}_{n_k}(\cdot) \to \dot{y}(\cdot) \text{ B } \omega\text{-}L^1(T,H).$$
 (5.20)

Положим

$$\dot{x}_k(\cdot) = x_{n_k}(\cdot), \ k \ge 1. \tag{5.21}$$

Из (5.5), (5.19), (5.20), (5.21), (5.12), (5.8), (5.6) вытекает

$$x_k(\cdot) \to y(\cdot) \text{ B } C(T, H),$$
 (5.22)

$$\dot{x}_k(\cdot) \to \dot{y}(\cdot) \text{ B } \omega\text{-}L^1(T, H),$$
 (5.23)

$$f_k(\cdot) \to f(\cdot) \text{ B } \omega\text{-}L^1(T, H),$$
 (5.24)

$$u_k(\cdot) \to u(\cdot) \text{ B } C(T, H),$$
 (5.25)

$$x_k(t) \in C(t, u_k), \ k \ge 1,$$
 (5.26)

$$-\dot{x}_k(t) - f_k(t) \in N_C(t, u_k(t))(x_k(t))$$
 n.b., (5.27)

$$\|\dot{x}_k(t) + f_k(t)\| \le \dot{\rho}(t) + C_o \times l(t) \text{ п.в.,}$$
 (5.28)

где $C_o = \sup\{(1 + \rho(T))\}, \ t \in T$

Воспользовавшись (1.3), (2.1) и (5.25) мы получим

$$C(t, u_k(t)) \to C(t, u(t)) \tag{5.29}$$

в метрике Хаусдорфа. Из (5.27), (5.26) и (5.22) вытекает

$$y(t) \in C(t, u(t)). \tag{5.30}$$

Обозначим

$$w_k(t) = -\dot{x}_k(t) - f_k(t). \tag{5.31}$$

Тогда из (5.22) и (5.24) следует

$$w_k(\cdot) \to -y(\cdot) - f(\cdot) \text{ B } \omega - L^1(T, H).$$
 (5.32)

Из (5.28) и (5.32) следует, что при каждом $t \in T$ последовательность $v_k(t), \ k \ge 1$ ограничена в H.

Возьмем фиксированное $t\in T$, при котором последовательность $v_k(t),\ k\geq 1$ ограничена в H. Последовательность $v_k(t),\ k\geq 1$ содержит слабо сходящиеся подпоследовательности. Пусть $v_{k_m}(t),\ m\geq 1$ подпоследовательность

$$v_{k_m}(t) \to v \text{ B } \omega - H.$$
 (5.33)

Из (5.22), (5.26), (5.29), (5.30), (5.33) и теорема 3.1 вытекает

$$v \in N_{C(t,u(t))}(y(t)).$$
 (5.34)

$$||v|| \le \dot{\rho}(t) + C_0 l(t). \tag{5.35}$$

Из (5.27), (5.28), (5.34), (5.35) следует, что множества

$$N(u_k) = N_{C(t,u_k(t))}(x_k(t) \cap (\dot{\rho}(t) + C_0 l(t)))\overline{B}, \tag{5.36}$$

$$N(u) = N_{C(t,u(t))}(y(t) \cap (\dot{\rho}(t) + C_0 l(t)))\overline{B}$$
 (5.37)

не пусты, выпуклы и замкнуты. Тем самым на множестве $Z=u(t)\cup (\cup k=1^\infty u_k(t))$ будет определено многозначное отображение $N:Z\rightrightarrows H$ с замкнутыми выпуклыми значениями. Используя теорему 3.1 и утверждение 3.1 мы получаем, что отображение слабо замкнуто в точке u. Непосредственно из (5.36) и (5.37) вытекает, что отображение N(t) слабо локально компактно в точке u. Поэтому согласно утверждения 3.4 отображение N обладает свойством (Q) в точке u. Следовательно

$$\bigcap_{n=1}^{\infty} \overline{\operatorname{co}} \bigcup_{k=n}^{\infty} N(u_k) \subset N(u). \tag{5.38}$$

Из (5.27), (5.28), (5.31), (5.32), (5.36), (5.37), произвольности t и леммы Мазура для слабо сходящихся последовательностей применительно к последовательности $u_k(\cdot)$, $k \ge 1$ мы получаем, что

$$-\dot{y}(t) - f(t) \in N_{C(t,u(t))}(y(t))$$
 п.в. (5.39)

Из (5.30) и (5.39) вытекает, что пара $y_u(f)(\cdot), f(\cdot), y_u(t)(f) = y(t)$ является решением включения (5.5). Так как включение (5.5) имеет единственное решение

$$x(\cdot) = \mathcal{L}(u,t),$$

TO $x(\cdot) = y_u(t).$

Таким образом мы показали, что если последовательность $u_n(\cdot) \to u(\cdot)$ в C(T,H), а последовательность $f_n(\cdot) \to f(\cdot)$ в ω - $L^1(T,H)$, то существует подпоследовательность $x_{n_k}(\cdot) = \mathcal{L}(u_{n_k},t_{n_k}), \ k \geq 1$ последовательности $x_n(\cdot) = \mathcal{L}(u_n,t_n), \ n \geq 1$, сходящаяся к $x(\cdot) = \mathcal{L}(u,t)$ в пространстве C(T,H). Если мы предположим, что сама последовательность $x_n(\cdot), \ n \geq 1$ не сходится, то рассуждая от противного и учитывая, что включение (5.5) имеет единственное решение $x(\cdot) = \mathcal{L}(u,t)$, мы придем к противоречию. Тем самым оператор $\mathcal{L}(u,t)$ является непрерывным из $\overline{\text{со}}\mathcal{M} \times \omega \mathcal{S}(\mathcal{L}^{\infty})$ в \mathcal{M} . Теорема доказана.

Доказательство теоремы 1.1. Из теоремы 5.1 следует, что множество

$$\mathcal{K} = \{ \mathcal{L}(u, v); u(\cdot) \in \overline{\text{co}}\mathcal{M} \}, \ t(\cdot) \in S(L^1)$$
 (5.40)

является компактным подмножеством пространства C(T,H), для которого справедливо включение (4.2). Поэтому на множестве \mathcal{K} будет определено отображение $g:\mathcal{K}\to L^1(T,H)$ и многозначные отображения $\mathcal{Y}_V,\mathcal{Y}_W \Rightarrow \omega\text{-}L^1(T,H)$ со свойствами, установленными в теоремах ??, 4.2, 4.3.

Определим многозначное отображение $\mathcal{F}:\mathcal{K} \rightrightarrows \omega\text{-}L^1(T,H)$.

$$\mathcal{F}(x) = g(x)\mathcal{Y}_{\widetilde{V}} + \mathcal{Y}_{\widetilde{W}}, \tag{5.41}$$

значениями которого являются выпуклые слабо компактные множества. Из (5.16), (5.14), (5.4) следует, что для любого $x(\cdot) \in \mathcal{K}$ имеет место неравенство $||x(t)|| \leq \rho(t), \ t \in T$. Тогда воспользовавшись (4.6), (4.10), (4.17), (4.20) и (1.9) мы получим неравенство

$$||f(t)|| \le l(t)(1+\rho(t))$$
 п.в., $f(\cdot) \in \mathcal{F}(x)$.

Из этого неравенства и (5.6) вытекает включение

$$\mathcal{F}(x) \subset S(L^1), \ x(\cdot) \in \mathcal{K}.$$
 (5.42)

Из свойств отображений $g,\ \mathcal{Y}_{\widetilde{V}},\ \mathcal{Y}_{\widetilde{W}}$, приведенных в теоремах $\ref{eq:condition}$, 4.2, 4.3 вытекает, что отображения $\mathcal{F}:\mathcal{K}\rightleftarrows\omega\text{-}L^1(T,H)$ слабо секвенциально замкнуто. Тогда из (5.40) и утверждения 3.1 , $\ref{eq:condition}$, следует, что отображение $\mathcal{F}:\mathcal{K}\rightleftarrows\omega$ - $S(L^1)$ является слабо полунепрерывным сверху отображением C с выпуклыми слабо компактными значениями.

Рассмотрим многозначное отображение

$$\mathcal{F}(\mathcal{L}) : \overline{\text{co}}\mathcal{M} \times \omega - S(L^1),$$
 (5.43)

$$\mathcal{F}(\mathcal{L})(u,f) = \mathcal{F}(\mathcal{L}(u,f)), \tag{5.44}$$

где $\mathcal{L}: \overline{\text{со}}\mathcal{M} \times \omega - S(L^1) \to \mathcal{K}$ оператор (5.15). Из теоремы 5.2 следует, что многозначное отображение $\mathcal{F}(\mathcal{L})$ является слабо полунепрерывным сверху с выпуклыми слабо компактными значениями.

Обозначим через $Y = C(T, H) \times \omega - L^1(T, H)$,

$$Z = \overline{\operatorname{co}}\mathcal{M} \times \omega - S(L^1) \subset Y. \tag{5.45}$$

Множество Z является выпуклым компактным подмножеством пространства Y .

Пусть

$$\phi(Z) = \mathcal{L}(u, f) \times \mathcal{F}(\mathcal{L})(u, f), \quad Z = (u, f). \tag{5.46}$$

Рассматривая отображение $\mathcal{L}(u,f)$ как многозначное, значениями которого являются одноточечные множества и учитывая (5.14), (5.40), (5.16), мы получим, что $\phi(Z) \subset Z$, для которого $z \in Z$.

Тем самым будет определено матричное отображение $\phi:(Z)\rightrightarrows Z$ с выпуклыми замкнутыми значениями, которые являются секвенциально замкнутыми в топологии пространства $Y=C(T,H)\times \omega\text{-}L^1(T,H)$. Так как Z является выпуклым метризуемым компактом в топологии пространства Y, то отображения $\phi:(Z)\rightrightarrows Z$ является полунепрерывным сверху отображением.

Воспользовавшись теоремой 1 в [9] мы получим, что отображение ϕ имеет неподвижную точку $z^* \in Z$, $z^* = (u^*, f^*)$, $z^* \in \phi(z^*)$.

Из этого включения (5.15), (5.16), (5.43) вытекает

$$u^* = \mathcal{L}(u^*, f^*), \tag{5.47}$$

$$f^* \in \mathcal{F}(\mathcal{L})(u^*, f^*). \tag{5.48}$$

Из (5.48), (5.47), (5.44) мы получаем, что

$$f^* \in \mathcal{F}(x^*). \tag{5.49}$$

Тогда, согласно (5.49), (5.41) $f^* \in g(x^*) + \mathcal{Y}_{\widetilde{V}}(x^*) + \mathcal{Y}_{\widetilde{W}}(x^*)$. Следовательно, существуют $f_V^*(x) \in \mathcal{Y}_{\widetilde{V}}(x^*)$, $f_W^*(x) \in \mathcal{Y}_{\widetilde{W}}(x^*)$, такие что

$$f^* \in g(x^*) + f_{\widetilde{V}}(x^*) + f_{\widetilde{W}}(x^*).$$
 (5.50)

Из (5.50), (4.5), (4.17), (4.10), (4.19) вытекают включения

$$g(x^*)(t) \in U(t, x^*(t)),$$
 (5.51)

$$f_{\widetilde{V}}(x^*)(t) \in V(t, x^*(t)),$$
 (5.52)

$$f_{\widetilde{V}}(x^*)(t) \in V(t, x^*(t)).$$
 (5.53)

Из (5.46) мы получаем, что $x^*(\cdot)$ является решением включения (5.45) при $x^*(t) = u^*(t), \ f(t) = f^*(t), \ t \in T$. Следовательно, согласно (5.5), (5.8)

$$-\dot{x}^*(t) \in N_{C(t,x^*(t))}(x^*(t) + f^*(t)),$$

$$x^*(t) \in C(t,x^*(t)), \ t \in T.$$
 (5.54)

Согласно определения 1.1 и (5.50)-(5.53) вытекает, что пара $(x^*(f^*), f^*)$, $x^*(f) = x^*$ является решением проблемы (P). Что касается неравенств (1.13), (1.14) они вытекают из включения $x^* \in \text{co}\mathcal{M}, f^* \in S(L^1)$, (5.14), (5.4), (5.6). Теорема доказана.

Многозначное отображение $U; T \times \mathcal{R}(C) \rightrightarrows H$ назовем непрерывным, если оно одновременно полунепрерывно снизу и сверху.

Corollary 5.1. Пусть выполняются предположения H(C), $H(C_S)$, H(V), H(W) и для отображения $U: T \times \mathcal{R}(C) \rightrightarrows H$ с замкнутым значениями имеет место предположения $H(U)^*$:

- 1) отображение $t \to U(t,x)$ измеримо;
- 2) отображение $x \to U(t,x)$ непрерывно;
- 3) выполняется неравенство (1.4)

Тогда справедливы утверждения теоремы 1.1.

Из лемм 1.1, 1.2 в [14] следует, что для любого $y \in H$ функция $x \to d(y, U(t, x)), t \in T$ непрерывна.

Из теоремы 3.5 [10] мы получаем, что функция $t \to d(y,U(t,x)), x \in \mathcal{R}(C)$ измерима. Поэтому согласно теоремы 6.1 функция $(t,x) \to d(y,U(t,x))$ является $\Sigma \otimes \mathcal{B}(\mathcal{R}(C))$ измеримой. Воспользовавшись теоремой 3.3 [10] мы получаем, что отображение $(t,x) \to U(t,x)$ слабо $\Sigma \otimes \mathcal{B}(\mathcal{R}(C))$ измеримо. Следовательно следствие вытекает из теоремы 1.1.

Список литературы

- [1] R.A. Poliquin, R.T. Rockafellar, L. Thibault. Local differentiability of distance functions. Trans. Amer. Math. Soc. 352 (2000), 5231–5249.
- [2] S. Adly, F. Nacry, L. Thibault. Discontinuous sweeping process with prox-regular sets. ESAIM: Control, Optimization and Calculus of Variations. 23 (2017), 1293–1329.
- [3] N. Chemetov, M.D. Monteiro Marques. Non-convex quasi-variational differential inclusions. Set-Valued Anal. 15 (2007), 209–221.
- [4] D. Azzam-Laouir, S. Izza, L. Thibault. Mixed semicontinuous perturbation of nonconvex state-dependent sweeping process. Set-Valued Anal. 22 (2014), 271–283.
- [5] J. Noel, L. Thibault. Nonconvex Sweeping Process with a Moving Set Depending on the State. Vietnam J. Math. 42(4)(2014), 595–612.
- [6] Doria Affanea, Mustapha Fateh Yarou. Perturbed first-order state dependent Moreau's sweeping process. Int. J. Nonlinear Anal. Appl. 12 (2021), 605–615.
- [7] Florent Nacry. Truncated nonconvex state-dependent sweeping process: implicit and semi-implicit adapted Moreau's catching-up algorithms. J. Fixed Point Theory Appl. 20 (3) (2018), 121.
- [8] J.J. Moreau. Evolution problem associated with a moving convex set in a Hilbert space. J. Diff. Equat. 26 (1997), 347–374.
- [9] F. Ky. Fixed point and minimax theorems in locally convex topological linear spaces. Proc. Nat. Acad Sci. USA. 38 (1952), 121–126.
- [10] C.J. Himmelberg. Measurable relations. Fundamenta Math. 87 (1975), 53-72.

- [11] R.T. Rockafellar, R.J.-B. Wets. Variational analysis. Springer-Verlag, 1997.
- [12] Shui-Hung Hou. On property (Q) and other semicontinuity properties of multifunctions. Pacific J. Math. 103(2) (1982), 39-56.
- [13] A.A. Tolstonogov. Upper semicontinuous convex-valued selectors of a Nemytskii operator with nonconvex values and evolution inclusions with maximal monotone operators. J. Math. Anal. Appl. 526(1) (2023), 127– 197.
- [14] A.A. Tolstonogov. Scorza-Dragoni's theorem for multivalued mappings with variable domain of definition // Math. Notes of the Academy of Science of the USSR. 48 (1990), 1151–1158.